PHOTOCYCLIZATION OF METHYL 2-ARYLTHIO- AND 2-ARYLOXY-ACETOACETATES

A FACILE SYNTHESIS OF BENZOHETEROCYCLES¹

TADASHI SASAKI,* KENJI HAYAKAWA and HIROSHI BAN

Institute of Applied Organic Chemistry, Faculty of Engineering Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464 Japan

(Received in Japan 13 June 1981)

Abstract—A series of methyl 2-arylthio- (2) and 2-aryloxy-acetoacetates (3) have been prepared and their tautomeric equilibria have been examined by ¹H NMR spectroscopy. S-substitution at the α -position results in an increase of enol tautomer over 90%, while the O-analogoues exist predominantly in the keto form (Table 1). Pyrex-filtered irradiation of 2-arylthic compounds 2a-1 in benzene-methanol (1:1) solution gives benzothiophene derivatives (6a-f, 7-10) in fair yield except for 2j and 2k, for which photocyclization does not occur and only polymer formation is observed. A similar irradiation of O-analogues 3b and 3c affords the furan derivatives 17 and 18, respectively, in rather low yield, whereas 3a in photoinert under these conditions. Regiospecificity of photocyclization is revealed by the reactions of 2-anaphtyl derivatives (2h and 3c) which afford only naphto[2,1-b] isomer. A plausible reaction mechanism is also discussed.

S-Aryl vinyl sulfides are known to undergo photocyclization to give 5-membered S heterocycles.²⁻⁵ Recently, Wolff revealed by flash photolytic studies that the reaction proceeds via the triplet excited state of the sulfides to colored dihydrothiophene intermediates which afford the final products by H-shifts or abstractions.⁶ Intermediacy of thiocarbonyl ylides was also inferred by Schultz and DeTar⁴ from results of chemical trapping experiments with dienophiles. The synthetic utility of these reactions called "heteroatom directed photoarylation" has been well presented by Schultz *et al.*^{7,8}

 α -Sulfenylated β -diketones and β -keto esters potentially have the structure of vinyl sulfides because of the enolizable property of the CO group.⁹ We report details of our work on photochemistry of methyl 2-arylthio- and 2-aryloxy-acetoacetates, which provides a facile synthesis of benzothiophene derivatives.¹⁰

RESULTS AND DISCUSSION

Preparation and spectral properties of 2-substituted methyl acetoacetates

Most methyl 2-arylthioacetoacetates (2a-k) were prepared in high yield by the reaction of commercially available methyl 2-chloroacetoacetate (1) with appropriate arylmercaptanes in the presence of equimolar triethylamine. Compound 21 was obtained by the reaction of 1 and 8-quinolinethiol tin complex prepared from 8-quinolinesulfonyl chloride and stannous chloride.¹¹

Because of decreased nucleophilicity of phenol relative to thiophenol, more vigorous conditions were required to effect the substitution for chlorine. Reaction of 1 with sodium phenoxides, prepared *in situ* from phenols and sodium hydride, in refluxing tetrahydrofuran (THF) solution containing one equiv of hexamethylphosphoramide (HMPA) gave methyl 2aryloxyacetoacetates (**3a**-c) in moderate yields. The 'H NMR spectral data of the α -substituted acetoacetates (2 and 3) are listed in Table 1 along with the data of some other related compounds.

The keto-enol tautomerism of β -keto esters has been studied by means of NMR spectroscopy.^{9,12,13} It is known that α -substituents affect the tautomeric equilibrium of β -diketones by both steric and inductive effects.⁹ Substitution of bulky or electron-donating groups at α -position reduces the enolization, whereas substitution of electron-withdrawing groups results in the increase of enol tautomer. The ¹H NMR data in Table 1 show the remarkable enol-increasing effect of sulfur. Introduction of an arylthio group at α -position of methyl acetoacetate results in a shift to over 90% enol tautomer,

					CH ₃		Же		
				keto ^a		-	encl ^a .		
compd	R	eno1%	CH ₃	OCH3	CH	CH3	о а н ₃	OH	others
1,	-C1	13	2.40	3.85	4.81	2.18	3,85	12.15	
2a	-SC ₆ H ₅	95	2.33	3.74	4.52	2,33	3.74	13.72	6.98-7.42 (m,5H)
$\stackrel{2b}{\sim}$	$-SC_6H_4-p-CH_3$	100				2,33	3.74	13.71	2.29 (s,3H) 7.03 (s,4H)
$\stackrel{2_{\mathcal{C}}}{\sim}$	$-SC_6H_4-p-00H_3$	86	2.35	3.87	4.38	2.35	3.74	13.60	3.74 (s,3H) 6.68-7.50 (m,4H)
24	$-SC_6H_4-p-F$	93	2.35	3.79	4.43	2.35	3.76	13,66	6.75-7.15 (m,4H)
2e	$-SC_{6}H_{4}-p-C1$	95	2.32	3.73	4.49	2,32	3,73	13,70	6.90-7.35 (m,4H)
$\widetilde{\widetilde{\mathcal{L}}}^{f}$	-SC6H4-p-Br	100				2.32	3,75	13.75	6.95,7.38 (A ₂ B ₂ ,4H) ^b
$\overset{2g}{\sim}$	-S(1-naphthy1)	94	2.33	3.75	4.50	2,33	3,71	13.82	7.03 (dd,1H) ^c 7.18-7.95 (m,5H) 8.15-8.40 (m,1H)
2h	-S(2-naphthy1)	95	2.35	3,77	4,62	2,35	3,73	13,78	7.20-7.98 (m,7H)
2i	-S(2-pyridyl)	100 ^d				2,31 2,40 ^e	3.72 3.78 ^e	13.76 5.5-5.9 ^e (br)	6.81-7.65 (m,3H) 8.38 (dm,1H) ^f
$\stackrel{2j}{\sim}$	-S(4-pyridy1)	100 ^g				2.31 ^e	3.76 ^e	11.5-12. (very br	5^e 7.00 (dd,1H) ^h) 8.41 (dd,1H) ^h
$\stackrel{2k}{\sim}$	-S(2-quinoly1)	82 ⁱ	2.38	3.83	4.77	2.33 2.51 ^e	3.72 3.83 ^e	13.85 5.93 (br	7.02-8.05 (m,6H))
21	-S(8-quinoly1)	92	2.42	3.78	5.27	2.36	3.72	13.97	7.05-7.68 (m,4H) 8.16 (dd,1H) <i>j</i> 8.96 (dd,1H) <i>k</i>
<u>3a</u>	-0C6H5	20	2.29	3,75	4.92	1,95	3,68	11.18	6.71-7.42 (m,SH)
<u>3</u> 2)	-0(1-naphthy1)	27	2.45	3,81	5.62	1.99	3.66	11,40	6.67 (m,1H) 7.15-7.90 (m,5H) 8.34 (m,1H)
<u>3</u> c,	-0(2-naphthy1)	26	2.42	3.84	5.24	2.02	3,72	11,36	7.02-7.89 (m,7H)
$\stackrel{4^{\mathcal{I}}}{\sim}$	-NHC6 ^H 5	38	2,28	ⁿ	5.08	2.03	ⁿ	12.36	6.47-6.90 (m,3H) 7.04-7.34 (m,2H)
5 ^m ~	-H	0	2.08		4.67				

Table 1. Enol percentage and ¹H NMR chemical shifts (δ values) of 2-substituted methyl acetoacetates in CDCl₃

...

^C All signals are sharp singlets unless otherwise noted. ^b $J_{AB}^{=}$ 8.8 Hz. ^c J = 7.5 and 2.0 Hz. ^d The ratio of cis/trans enols is 2.3. ^e Signals assigned to the trans enol. ^c J = 4.5 Hz. ^e This is composed of only trans enol. ^h J = 4.8 and 1.5 Hz. ^d The ratio of cis/trans enols is 2.0. ^d J = 8.3 and 1.5 Hz. ^k J = 4.5 and 1.5 Hz. ^Z Reference ^m Reference 9. ⁿ The reported data are for the ethyl ester, keto; 6 1.23 (t) and 4.25 (q), enol; 6 1.13 (t) and 4.20 (q):

while the equilibrium is on the side of the keto tautomer for oxygen- (3) and nitrogen analogs (4). Methyl acetoacetate (5) (100% keto form) and most 2-alkyl derivatives also exist predominantly in the keto form.⁹ Therefore, this unique effect of sulfur can be attributed to the stabilization of enol tautomer by sulfur conjugation,^{14,15} while neither steric effect nor inductive effect gives reasonable explanation for these results.

The enol OH proton shows a sharp singlet at very low magnetic field indicating the internally H-bonded conformers 2' and 3' (Scheme 1). Forsen and Nilsson¹⁶ have

shown that a linear relationship exists between the chelated CO stretching frequency and the chemical shift of the enol proton. A lower chemical shift of the enol OH corresponds to a stronger intramolecular H-bond.⁹ In the case of 2i, two kinds of enol signals were observed in the ratio of 2.3:1, but none of the keto tautomer. The broad OH signal (δ 5.5-5.9) of the minor enol (Table 1) suggests the *trans* conformation with a weaker intramolecular H bond with pyridine nitrogen as depicted in 2ith. The *trans* enol of methyl acetoacetate was recently reported by Matusch.¹² The similar enol signals

were observed for the structurally related 2k but 21, in which such an intramolecular H-bond is not feasible, showed only signals due to the *cis* enol. The ¹H NMR spectrum of compound 2j indicated the presence of only one enol conformer (Table 1). Although the spectrum was not changed over the measurable concentration range, the very broad signal of enol proton at δ 11.5-12.5 was considered to be a result of the intermolecular H-bond¹⁷ via nitrogen, probably a bimolecular H-bond like 2j". This was also suggested by the photochemical inactivity of 2j (vide infra).

Photochemistry of methyl 2-arylthio- and 2-aryloxyacetoacetates. Irradiation of 2a in benzene-methanol (1:1) solution under argon using a 100-W high pressure mercury lamp with a Pyrex filter gave benzothiophene 6a $(X = H, m.p. 104-105^{\circ})^{16}$ in 66% yield as the sole product.

Scheme 2

The same photoreaction took place in a variety of solvents but in rather low yields: benzene (29%), acetone (21%), acetonitrile (19%), chloroform (21%) and methanol (41%).

Since aryl vinyl sulfides are well known to photocyclize via ylide intermediates,^{4,6-8} the photoreaction of 2a can be considered to occur from the enolic form present in tautomeric equilibrium with the keto form (Table 1) to give the thiocarbonyl ylide 11 (X = S, R = Me₃). The product is then formed either by direct dehydration of 11 or by the route via dihydrothiophene 12 (X = S, R = Me₃)^{4,7} which would be easily dehydrated.

The similar photocyclization of the aza-analogues was reported by Schultz and Hagmann.^{19,20} They isolated 3-hydroxyindoline 12 (X = Me₃, R = Et) by the photolysis of 2-anilinoacetoacetate in the absence of acids.¹⁹ The

 β -hydroxy ketone intermediate was also spectroscopically observed for the selenium analog.²¹ Irradiation of 2a in n-hexane in the presence of sodium carbonate afforded only 6a (29%) and no evidence for the presence of 12 (X = S, R = Me) was obtained by ¹H NMR analysis of the crude mixture. Furthermore, the attempt of trapping the ylide intermediates was unsuccessful. When a degassed benzene solution of 2a (or 2h) was irradiated in the presence of excess N-phenylmaleimide which is known to be a good dipolarophile, 4.22.23 N-phenylmaleimide was completely recovered and only benzothiophene 6a (or 8) was obtained. The allyl ester 13 was also irradiated in benzene in order to trap intramolecularly (14 in Scheme 3). The product isolated, however, was only benzothiophene 15 (20%). From these results, the direct dehydration mechanism of thiocarbonyl ylide 11 seems to be more attractive.

Pyrex-filtered irradiation of the series of methyl 2arylthioacetoacetates 2a-1 in degassed benzene-methanol (1:1) solution generally gave the corresponding benzothiophene derivatives in fair yields as the sole product (Table 2). Similar results were observed for some α arylthio- β -dicarbonyl compounds.²⁴

In the case of 2h, a regiospecific photocyclization was observed: only naphtho[2,1-b]thiophene 8 is formed with no trace of the [2,3-b] isomer 16. The structure of 8 was supported by its ¹H NMR spectrum (Table 2) showing a characteristic downfield shift of the Me signal (δ 3.24) as a result of the deshielding effect of the proximate aromatic ring. The similar regiospecificity was reported for the photocyclization of 2-naphthyl vinyl sulfide.⁴

Compound 2j was photoinert under the same conditions and the prolonged irradiation only led to the formation of a polymer. This result appears to bear relation to the unique spectral feature of 2j (Table 1). The bimolecular H-bond like 2j'' makes the aromatic ring remote from the enol double bond. Therefore, no efficient interaction of two groups in the excited state can be expected for 2j.

Irradiation of 2k did not lead to detection of a cyclization product, but rather only to slow photopolymerization. This is interesting, because both 2i and 2l smoothly undergo photocyclization. The same factors controlling the regiochemistry of photocyclization of 2h seem to play an important role in this reaction. When cyclization occurs at C(2), aromaticity in the adjacent ring is no longer retained and this would make the reaction very unfavorable.

Photochemistry of some oxygen analogues have been investigated. Pyrex-filtered irradiation of methyl 2phenoxyacetoacetate (3a) in degassed benzene-methanol

	Table 2. F	Photocyclization	of methyl 2	2-arylthio- and	2-aryloxy	acetoacetates			
substrate	product	irradiated time	yield, %b	mp,°C	IR, cm ⁻¹	$\frac{1}{1000 \text{ GOOCH}_3 \text{ CDOCH}_3}$	c)	ana] calcd/fo	I. Dund
2a 2a	x	æ	66	104-105 ^d	1695	3.91 2.77 7.30-7.	92 []	64.06 64.13	4.89
2b 2b	$\underbrace{6b}{\underbrace{6b}}, X = H$	6.5	61	89-90	1695	3.92 2.75 2.50(s,	3H)	65,43	5.49
5c	δc , $X = \delta CH_3$	Q	57	93-95	1710	7.2-7.8 3.90 2.72 3.88(s,	(m, 3H) 3H)	65.60 61.00	5.55 5.12
						7.17(s, 7.17(s,	, IH) ^c 1H) 1H)	61.22	5.19
2d	6d, X = F	6	56	131-132	1705		íн,	58.92 58.88	4.05
2e	śe, X = C1	12	15	146-147	1705	3.93 2.73 7.45-7.8 (m,4H)	رب ا	54.89 54.69	3.77
2f	$\widetilde{0}$ f, X = Br	6	55	160-161	1710	3.90 2.70 7.46(d dd 7.54(dd,	, 1Н) ⁸ 1Н) ^ћ	46.33 45.93	3.18 3.55
50 ~2	Me CO ₂ Me	٢	64	159-161	1705	7.90 (m, 3.90 2.74 7.40-8.2) (m,6H)	(HI I	70.29 70.07	4.72
2h 2	A co₂Me	T	5	127-128.5	1695	3.93 3.24 7.45-8.01 (m.3H) 8.72(m,1H		70.29 4 70.00 4	1.72 1.45

T. SASAKI et al.

^q MS m/e (rel intensity) 240 (M⁺, 100), 209 (52). * anal. N(calcd/found) = (6.76/6.98).

** anal. N(calcd/found) = (5.44/5.40).

4.5 Нz. ^m 209 (59). (1:1) resulted in the recovery of the starting material along with the formation of a polymeric substance and a small amount of phenol. Irradiation with a quartz filter only led to increase of polymer formation. Pyrex-filtered irradiation of naphthyl derivatives **3h** and **3c** under the same conditions afforded naphthofurans **17** and **18**, respectively, in rather low yield (Table 2). Regiospecificity of photocyclization of **3c** is analogous to that of **2h** and the product is only naphtho[2,1-b]furan **18** which shows the similar down-field shift of Me signal in the 'H NMR spectrum (Table 2).

Photocyclization of aryl vinyl ethers is well documented.^{8,25} The reaction seems to proceed similarly via carbonyl ylide intermediate (ex, 11 (X = O)). The dihydrofuran derivatives⁸ (ex, 12 (X = O)) were again not detected. The low efficiency of photocyclization of 2-aryloxyacetoacetates compared with that of 2-aryl-thioacetoacetates can be attributed to its poor enolization ability (Table 1).

EXPERIMENTAL

General. M.ps were measured with a Yanagimoto micromelting point apparatus and are uncorrected. Microanalyses were performed with Perkin-Elmer 240 B elemental analyzer. UV spectra were determined with a Hitachi spectrophotometer (Model 200-10). ¹H NMR spectra were taken with a JEOL C-60-HL spectrometer and with a JEOL FX 60 FT NMR spectrometer, TMS was used as an internal standard. IR spectra were taken with a JASCO IRA-I spectrometer. Mass spectra were obtained with a Hitachi RMS-mass spectrometer at 70 eV.

Methyl 2-phenylthioacetoacetate (2a)

General procedure for preparation of methyl 2-arylthioacetoacetates. Et₃N (1.59 g, 15.7 mmol) was added dropwise to a stirred soln of 1^{26} (2.38 g, 15.0 mmol) and thiophenol (1.65 g, 15.0 mmol) in CH₂Cl₂ (25 ml) at 0° under N₂. The mixture was stirred overnight at room temp. At the end of this time n-hexane (150 ml) was added and the resulting mixture was washed with water $(3 \times 50 \text{ ml})$. The organic layer was dried over Na₂SO₄, and the solvent was evaporated under reduced pressure. The yellow oil obtained was chromatographed on a silica gel column using n-hexane-EtOAc (10:1) to give 2a (3.15 g, 94%) as colorless oil, bp 115-120° (1.0 mm); IR (neat) 3080-2700 (br), 1630, 1595, 1485, 1450, 1345 and 1260 cm⁻¹; UV (MeOH) 248 (¢ 17840) and 292 nm (ϵ 2048, sh). The 'HNMR data are summarized in Table 1. (Found: C, 58.78; H, 5.23. C11H12O3S requires: C, 58.91; H, 5.39%). Compounds 2b-2k were prepared from 1 and arylmercaptanes similarly as 2a. The yields and physical data of those compounds were summarized in Tables 2 and 3.

Methyl 2-(8-quinolylthio)acetoacetate (21). The tin salt of 8quinolinethiol was prepared from 8-quinolinesulfonyl chloride according to the method of Badger and Buttery.¹¹ The salt (1.55 g, 3.53 mmol) and 1 (1.06 g, 7.1 mmol) was dissolved in CH₂Cl₂-DMF (3:1) (20 ml) and the resulting mixture was stirred

Table 3	Prenaration	of 2-substituted	methyl acet	oacetates
Taon	I ICDAIAHOH	UL 2-SBUSHLUKU	mount acce	vacciaico

				cal	anal. d/four	nd
product	yield(%)	mp, °C	IR, cm ⁻¹	C	Ĥ	N
2a	94		3080 2700(br) 1630	58.95	5,39	
			1595 1485 1345	58,78	5.23	
2b	93	73-74	3040 2720 1590	60.48	5.92	
			1435 1335 1250	60.43	5,90	
2c	98		1720 1585 1490	56.68	5.55	
			1435 1330 1240	56.65	5.58	
2 d	98		3040-2680 1590	54.54	4.58	
			1490 1445 1380	54.43	4.52	
			1340			
2 e	83	50-52	3040-2640 1580	51.07	4.29	
			1435 1330 1240	50.81	4.23	
2 f	90	61-63	3020-2680 1585	43.58	3.66	
			1440 1370 1320	43.56	3.68	
2 g	86	105-107	3080-2680 1595	65.67	5.14	
Ū			1440 1335	65.79	5.23	
2h	78	142-144	3420 1620 1595	65.67	5.14	
			1505 1335	65.81	5.38	
2 j	87	45-47	3080-2680 1575	53.32	4.92	6.22
ý			1440 1425	53.37	4.89	6.15
2 k			3060-2640 1715	61.08	4.76	5.09
			1590 1445 1340	60.93	4.53	4,98
			1255			
21	47	137-138	1615 1590 1440	61.08	4.76	5.09
			1325 1240	60.04	4.74	5.02
3a	22		1745 1725 1650	63.45	5.81	
			1590 1485 1435	63.42	5.84	
3h	37		3065 1750 1725	69.76	5.46	
	- ,		1655 1580	69.46	5.49	
30	3.3		3080 1765 1735	69.76	5.46	
			1630 1615 1435	69.70	5,52	
			= = = = = = = = = = = = = = = = =			

overnight at room temp. The insoluble salts were removed by filtration and filtrate was evaporated under reduced pressure. The residue was chromatographed on a silica gel column using nhexane-EtOAc (3:1) and recrystallized from ether-CH2Cl2 to give 21 as colorless crystals (455 mg, 47%), m.p. 137-138°; IR (KBr) 1615, 1590, 1440, 1325 and 1240 cm⁻¹. The ¹H NMR data are listed in Table 1. (Found: C, 60.84; H, 4.74; N, 5.02. C₁₄H₁₃NO₃S requires: C, 61.08; H, 4.76; N, 5.09%).

Methyl 2-phenoxyacetoacetate (3a)

General procedure for preparation of 2-aryloxyacetoacetates. A soln of phenol (941 mg, 10 mmol) in dry THF (4 ml) was carefully added at 0° to a stirred suspension of NaH (60% in oil, 400 mg, 10 mmol) in THF (5 ml) under Ar. After the mixture was stirred at room temp for 1 hr, tetramethylethylenediamine (1.16 g, 10 mmol) and 1 (1.50 g, 10 mmol) were added. The resulting soln was heated to reflux for 4 hr. At the end of this time water (15 ml) was added and the resulting mixture was extracted with CH₂Cl₂ $(3 \times 30 \text{ ml})$. The combined organic layer was washed with brine, dried over NaSO₄, and evaporated under reduced pressure. The brown residual oil was chromatographed on a silica gel column using n-hexane-CHCl₃ (1:1) to give 3a as colorless viscous oil (451 mg, 22%); IR (neat) 1745, 1725, 1650, 1590, 1485, 1435, 1350, 1260 and 1200 cm⁻¹. The ¹H NMR data are summarized in Table 1. (Found: C, 63.42; H, 5.84. C₁₁H₁₂O₄ requires: C, 63.45; H, 5.81%). Compounds 3b-3c were prepared from 1 and arylmercaptanes similarly as 3a. The yields and physical data of those compounds were summarized in Tables 1 and 3.

Irradiation of 2a

General photochemcial procedure. A soln of 2a (500 mg, 2.23 mmol) in benzene-MeOH (1:1, 120 ml) was placed in the preparative photoreactor and Ar was passed into the soln for 15 min prior to and during irradiation. The soln was irradiated with a Ushio 100-W high pressure mercury lamp placed in a water -cooled Pyrex well. After 8 hr, the solvent was evaporated under reduced pressure and the residue was chromatographed on a short silica gel column using n-hexane-EtOAc (20:1) in order to remove the polymeric substances. The colorless solid obtained was recrystallized from n-hexane-ether to give 6a (305 g, 66%) as colorless needles, m.p. 104-105° (Lit.¹⁸ m.p. 102.5-103°). IR and 'HNMR data are summarized in Table 2. Compounds 2b-3c were also irradiated as above. The results were summarized in Table 2.

Irradiation of 2a (300 mg, 1.34 mmol) in each 100 ml of benzene, acetone, acetonitrile, chloroform and methanol under the same conditions followed by the similar work-up gave 6a in 29%, 21%, 19%, 21% and 41% yields, respectively.

Anhyd Na₂CO₃ (150 mg) was added to a soln of 2a (360 mg, 1.6 mmol) in n-hexane (100 ml) and the resulting mixture was irradiated for 4 hr under vigorous stirring. The insoluble base was filtered off and the filtrate was evaporated under reduced pressure. Chromatography and crystallization from n-hexane gave 6a (95 mg, 29%).

Irradiation of 2h in the presence of N-phenylmaleimide. A soln of 2h (150 mg, 0.55 mmol) and N-phenylmaleimide (190 mg, 1.1 mmol) in benzene (100 ml) was irradiated for 3 hr under Ar. Evaporation and column chromatography on silica gel using hexane-EtOAc (10:1) gave 8 (41 mg, 29%) and unreacted Nphenylmaleimide (145 mg, 76%) in the order of elution.

Allyl 2-phenylthioacetoacetate (13). A soln of 2a (500 mg, 2.23 mmol) in allyl alcohol (5 ml) containing 2 drops H₂SO₄ was

heated under reflux for 10 hr. At the end of this time solid K₂CO₃ and ether (30 ml) were added and the resulting mixture was washed with NaHCO₃aq and water, dried over NaSO₄, and evaporated. The residue was chromatographed on a silica gel column using n-hexane-EtOAc (12:1) to give 13 (250 mg, 45%) as colorless oil; IR (neat) 3080-2640 (br), 1620, 1585, 1380, 1325 and 1240 cm⁻¹; NMR (CDCl₃) δ 2.32 (s, 3H), 4.59 (dm, J = 5.0 Hz, 2H), 4.90–5.32 (m, 2H), 5.46–6.10 (m, 1H), 6.90–7.35 (m, 5H), 13.62 (s, 1H). (Found: C, 62.53; H, 5.71. $C_{13}H_{14}O_{3}S$ requires: C, 62.38; H, 5.64%).

Irradiation of 13. A soln of 13 (120 mg, 0.48 mmol) in benzene (80 ml) was irradiated for 4 hr. Evaporation and column chromatography using hexane-EtOAc (40:1) afforded 15 (25 mg, 22%) as colorless oil, b.p. 120-125° (1.0 mm); IR (neat) 1695, 1270, 1235, 1105 and 1050 cm⁻¹; NMR (CDCl₃) δ 2.76 (s, 3H), 4.79 (dd, J = 5.2 and 1.2 Hz, 2H), 5.12-5.65 (m, 2H), 5.72-6.30 (m, 1H), 7.25-7.88 (m, 4H). (Found: C, 67.10; H, 5.33. C₁₃H₁₂O₂S requires: C, 67.22; H, 5.21%).

REFERENCES

- ¹Photochemistry of Organosulfur Compounds. 3. For part 2 see: T. Sasaki, K. Hayakawa and S. Nishida, Tetrahedron Letters 3903 (1980).
- ²S. H. Groen, R. M. Kellogg and H. Wynberg, J. Org. Chem. 33, 2218 (1968).
- ³E. Block and E. J. Correy, Ibid. 34, 896 (1969).
- 4ª A. G. Schultz and M. B. DeTar, J. Am. Chem. Soc. 98, 3564 (1976); ^bIbid. 96, 296 (1974).
- ⁵K.-P. Zeller and H. Perterson, Synthesis 532 (1975).
- ⁶T. Wolff, J. Am. Chem. Soc. 100, 6157 (1978).
- 7A. G. Schultz, W. Y. Fu, R. D. Lucci, B. G. Kurr, K. M. Lo and M. Boxer, Ibid. 100, 2140 (1978).
- ⁸A. G. Schultz, R. D. Lucci, W. Y. Fu, M. H. Berger, J. Erhardt, W. K. Hagmann, Ibid. 100, 2150 (1978).
- ⁹J. L. Burdett and M. T. Rogers, *Ibid.* **86**, 2105 (1964). ¹⁰For a preliminary report, see: T. Sasaki and K. Hayakawa, Tetrahedron Letters 1525 (1980).
- ¹¹C. M. Badger and R. G. Buttery, J. Chem. Soc. 3236 (1956).
- ¹²R. Matusch, Angew. Chem. 87, 283 (1975).
- ¹³I. Willner and M. Rabinovitz, J. Org. Chem. 45, 1628 (1980).
- ¹⁴G. W. Wheland, Advanced Organic Chemistry (3rd Edn). Wiley: New York (1960).
- ¹⁵H. Kwart and K. G. King, d-Orbitals in the Chemistry of Silicon, Phosphorous and Sulfur. Springer Verlag: Berlin (1977).
- ^{16a}S, Forsen and M. Nilsson, Acta Chem. Scand. 13, 1383 (1959); ^bIbid. 1333 (1960); ^cS. Forsen, M. Nilsson and C. A. Wachtmeister, Ibid. 16, 583 (1962).
- ¹⁷M. T. Rogers and J. L. Burdett, Can. J. Chem. 43, 1516 (1965).
- ¹⁸T. Higa and A. Krubsack, J. Org. Chem. 41, 3399 (1976).
- ¹⁹A. G. Schultz and W. K. Hagmann, Chem. Commun. 726 (1976).
- ²⁰A. G. Schultz and W. K. Hagmann, J. Org. Chem. 43, 3391 (1978).
- ²¹A. G. Schultz, Ibid. 40, 3466 (1975).
- ²²J. D. Bower and R. H. Schlessinger, J. Am. Chem. Soc. 91, 6891 (1969).
- ²³H. Buter, S. Wassenaar and R. M. Kellogg, J. Org. Chem. 37, 4045 (1972).
- ²⁴W. K. Hagmann, Ph.D. thesis, Cornell University (1978).
- ²⁵A. G. Schultz and W. K. Fu, J. Org. Chem. 41, 1483 (1976).
- ²⁶Aldrich Chemical Co., Inc.